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Abstract

The Python Cryptography Toolkit describes a package containing various cryptographic modules for the Python
programming language. This documentation assumes you have some basic knowledge about the Python language,
but not necessarily about cryptography.

Contents

1 Introduction

1.1 Design Goals

The Python cryptography toolkit is intended to provide a reliable and stable base for writing Python programs that
require cryptographic functions.

A central goal of the author’s has been to provide a simple, consistent interface for similar classes of algorithms. For
example, all block cipher objects have the same methods and return values, and support the same feedback modes.
Hash functions have a different interface, but it too is consistent over all the hash functions available. Some of these
interfaces have been codified as Python Enhancement Proposal documents, as PEP 247, “API for Cryptographic Hash
Functions”, and PEP 272, “API for Block Encryption Algorithms”.

This is intended to make it easy to replace old algorithms with newer, more secure ones. If you’re given a bit of
portably-written Python code that uses the DES encryption algorithm, you should be able to use AES instead by simply
changing from Crypto.Cipher import DES to from Crypto.Cipher import AES, and changing all
references to DES.new() to AES.new(). It’s also fairly simple to write your own modules that mimic this interface,
thus letting you use combinations or permutations of algorithms.

Some modules are implemented in C for performance; others are written in Python for ease of modification. Gener-
ally, low-level functions like ciphers and hash functions are written in C, while less speed-critical functions have been
written in Python. This division may change in future releases. When speeds are quoted in this document, they were
measured on a 500 MHz Pentium II running Linux. The exact speeds will obviously vary with different machines,
different compilers, and the phase of the moon, but they provide a crude basis for comparison. Currently the cryp-
tographic implementations are acceptably fast, but not spectacularly good. I welcome any suggestions or patches for
faster code.



I have placed the code under no restrictions; you can redistribute the code freely or commercially, in its original form
or with any modifications you make, subject to whatever local laws may apply in your jurisdiction. Note that you still
have to come to some agreement with the holders of any patented algorithms you’re using. If you’re intensively using
these modules, please tell me about it; there’s little incentive for me to work on this package if I don’t know of anyone
using it.

I also make no guarantees as to the usefulness, correctness, or legality of these modules, nor does their inclusion con-
stitute an endorsement of their effectiveness. Many cryptographic algorithms are patented; inclusion in this package
does not necessarily mean you are allowed to incorporate them in a product and sell it. Some of these algorithms may
have been cryptanalyzed, and may no longer be secure. While I will include commentary on the relative security of
the algorithms in the sections entitled ”Security Notes”, there may be more recent analyses I’m not aware of. (Or
maybe I’m just clueless.) If you’re implementing an important system, don’t just grab things out of a toolbox and put
them together; do some research first. On the other hand, if you’re just interested in keeping your co-workers or your
relatives out of your files, any of the components here could be used.

This document is very much a work in progress. If you have any questions, comments, complaints, or suggestions,
please send them to me.

1.2 Acknowledgements

Much of the code that actually implements the various cryptographic algorithms was not written by me. I’d like
to thank all the people who implemented them, and released their work under terms which allowed me to use their
code. These individuals are credited in the relevant chapters of this documentation. Bruce Schneier’s book Applied
Cryptography was also very useful in writing this toolkit; I highly recommend it if you’re interested in learning more
about cryptography.

Good luck with your cryptography hacking!

A.M.K.

comments@amk.ca

Washington DC, USA

June 2005

2 Crypto.Hash: Hash Functions

Hash functions take arbitrary strings as input, and produce an output of fixed size that is dependent on the input; it
should never be possible to derive the input data given only the hash function’s output. One simple hash function
consists of simply adding together all the bytes of the input, and taking the result modulo 256. For a hash function
to be cryptographically secure, it must be very difficult to find two messages with the same hash value, or to find a
message with a given hash value. The simple additive hash function fails this criterion miserably and the hash functions
described below meet this criterion (as far as we know). Examples of cryptographically secure hash functions include
MD2, MD5, and SHA1.

Hash functions can be used simply as a checksum, or, in association with a public-key algorithm, can be used to
implement digital signatures.

The hashing algorithms currently implemented are:
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Hash function Digest length
MD2 128 bits
MD4 128 bits
MD5 128 bits

RIPEMD 160 bits
SHA1 160 bits

SHA256 256 bits

All hashing modules share the same interface. After importing a given hashing module, call the new() function to
create a new hashing object. You can now feed arbitrary strings into the object with the update() method, and can
ask for the hash value at any time by calling the digest() or hexdigest() methods. The new() function can
also be passed an optional string parameter that will be immediately hashed into the object’s state.

Hash function modules define one variable:

digest size
An integer value; the size of the digest produced by the hashing objects. You could also obtain this value by
creating a sample object, and taking the length of the digest string it returns, but using digest size is faster.

The methods for hashing objects are always the following:

copy()
Return a separate copy of this hashing object. An update to this copy won’t affect the original object.

digest()
Return the hash value of this hashing object, as a string containing 8-bit data. The object is not altered in any
way by this function; you can continue updating the object after calling this function.

hexdigest()
Return the hash value of this hashing object, as a string containing the digest data as hexadecimal digits. The
resulting string will be twice as long as that returned by digest(). The object is not altered in any way by
this function; you can continue updating the object after calling this function.

update(arg)
Update this hashing object with the string arg.

Here’s an example, using the MD5 algorithm:

>>> from Crypto.Hash import MD5
>>> m = MD5.new()
>>> m.update(’abc’)
>>> m.digest()
’\x90\x01P\x98<\xd2O\xb0\xd6\x96?}(\xe1\x7fr’
>>> m.hexdigest()
’900150983cd24fb0d6963f7d28e17f72’

2.1 Security Notes

Hashing algorithms are broken by developing an algorithm to compute a string that produces a given hash value, or
to find two messages that produce the same hash value. Consider an example where Alice and Bob are using digital
signatures to sign a contract. Alice computes the hash value of the text of the contract and signs the hash value with
her private key. Bob could then compute a different contract that has the same hash value, and it would appear that
Alice signed that bogus contract; she’d have no way to prove otherwise. Finding such a message by brute force takes
pow(2, b-1) operations, where the hash function produces b-bit hashes.

If Bob can only find two messages with the same hash value but can’t choose the resulting hash value, he can look
for two messages with different meanings, such as ”I will mow Bob’s lawn for 10”and”IoweBob1,000,000”, and ask
Alice to sign the first, innocuous contract. This attack is easier for Bob, since finding two such messages by brute
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force will take pow(2, b/2) operations on average. However, Alice can protect herself by changing the protocol;
she can simply append a random string to the contract before hashing and signing it; the random string can then be
kept with the signature.

None of the algorithms implemented here have been completely broken. There are no attacks on MD2, but it’s rather
slow at 1250 K/sec. MD4 is faster at 44,500 K/sec but there have been some partial attacks on it. MD4 makes
three iterations of a basic mixing operation; two of the three rounds have been cryptanalyzed, but the attack can’t be
extended to the full algorithm. MD5 is a strengthened version of MD4 with four rounds; an attack against one round
has been found XXX update this. MD5 is still believed secure at the moment, but people are gravitating toward using
SHA1 in new software because there are no known attacks against SHA1. The MD5 implementation is moderately
well-optimized and thus faster on x86 processors, running at 35,500 K/sec. MD5 may even be faster than MD4,
depending on the processor and compiler you use.

All the MDn algorithms produce 128-bit hashes; SHA1 produces a larger 160-bit hash, and there are no known attacks
against it. The first version of SHA had a weakness which was later corrected; the code used here implements the
second, corrected, version. It operates at 21,000 K/sec. SHA256 is about as half as fast as SHA1. RIPEMD has a
160-bit output, the same output size as SHA1, and operates at 17,600 K/sec.

2.2 Credits

The MD2 and MD4 implementations were written by A.M. Kuchling, and the MD5 code was implemented by Colin
Plumb. The SHA1 code was originally written by Peter Gutmann. The RIPEMD code was written by Antoon Bosse-
laers, and adapted for the toolkit by Hirendra Hindocha. The SHA256 code was written by Tom St. Denis and is part
of the LibTomCrypt library (http://www.libtomcrypt.org/); it was adapted for the toolkit by Jeethu Rao and Taylor Boon.

3 Crypto.Cipher: Encryption Algorithms

Encryption algorithms transform their input data, or plaintext, in some way that is dependent on a variable key, pro-
ducing ciphertext. This transformation can easily be reversed, if (and, hopefully, only if) one knows the key. The key
can be varied by the user or application and chosen from some very large space of possible keys.

For a secure encryption algorithm, it should be very difficult to determine the original plaintext without knowing the
key; usually, no clever attacks on the algorithm are known, so the only way of breaking the algorithm is to try all
possible keys. Since the number of possible keys is usually of the order of 2 to the power of 56 or 128, this is not a
serious threat, although 2 to the power of 56 is now considered insecure in the face of custom-built parallel computers
and distributed key guessing efforts.

Block ciphers take multibyte inputs of a fixed size (frequently 8 or 16 bytes long) and encrypt them. Block ciphers
can be operated in various modes. The simplest is Electronic Code Book (or ECB) mode. In this mode, each block of
plaintext is simply encrypted to produce the ciphertext. This mode can be dangerous, because many files will contain
patterns greater than the block size; for example, the comments in a C program may contain long strings of asterisks
intended to form a box. All these identical blocks will encrypt to identical ciphertext; an adversary may be able to use
this structure to obtain some information about the text.

To eliminate this weakness, there are various feedback modes in which the plaintext is combined with the previous
ciphertext before encrypting; this eliminates any repetitive structure in the ciphertext.

One mode is Cipher Block Chaining (CBC mode); another is Cipher FeedBack (CFB mode). CBC mode still encrypts
in blocks, and thus is only slightly slower than ECB mode. CFB mode encrypts on a byte-by-byte basis, and is much
slower than either of the other two modes. The chaining feedback modes require an initialization value to start off
the encryption; this is a string of the same length as the ciphering algorithm’s block size, and is passed to the new()
function. There is also a special PGP mode, which is an oddball variant of CFB used by the PGP program. While you
can use it in non-PGP programs, it’s quite non-standard.

The currently available block ciphers are listed in the following table, and are in the Crypto.Cipher package:
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Cipher Key Size/Block Size
AES 16, 24, or 32 bytes/16 bytes

ARC2 Variable/8 bytes
Blowfish Variable/8 bytes

CAST Variable/8 bytes
DES 8 bytes/8 bytes

DES3 (Triple DES) 16 bytes/8 bytes
IDEA 16 bytes/8 bytes
RC5 Variable/8 bytes

In a strict formal sense, stream ciphers encrypt data bit-by-bit; practically, stream ciphers work on a character-by-
character basis. Stream ciphers use exactly the same interface as block ciphers, with a block length that will always
be 1; this is how block and stream ciphers can be distinguished. The only feedback mode available for stream ciphers
is ECB mode.

The currently available stream ciphers are listed in the following table:

Cipher Key Size
Cipher Key Size
ARC4 Variable
XOR Variable

ARC4 is short for ‘Alleged RC4’. In September of 1994, someone posted C code to both the Cypherpunks mailing list
and to the Usenet newsgroup sci.crypt, claiming that it implemented the RC4 algorithm. This claim turned out to
be correct. Note that there’s a damaging class of weak RC4 keys; this module won’t warn you about such keys.

A similar anonymous posting was made for Alleged RC2 in January, 1996.

An example usage of the DES module:

>>> from Crypto.Cipher import DES
>>> obj=DES.new(’abcdefgh’, DES.MODE_ECB)
>>> plain="Guido van Rossum is a space alien."
>>> len(plain)
34
>>> obj.encrypt(plain)
Traceback (innermost last):
File "<stdin>", line 1, in ?

ValueError: Strings for DES must be a multiple of 8 in length
>>> ciph=obj.encrypt(plain+’XXXXXX’)
>>> ciph
’\021,\343Nq\214DY\337T\342pA\372\255\311s\210\363,\300j\330\250\312\347\342I\3215w\03561\303dgb/\006’
>>> obj.decrypt(ciph)
’Guido van Rossum is a space alien.XXXXXX’

All cipher algorithms share a common interface. After importing a given module, there is exactly one function and
two variables available.

new(key, mode[, IV ])
Returns a ciphering object, using key and feedback mode mode. If mode is MODE CBC or MODE CFB, IV must
be provided, and must be a string of the same length as the block size. Some algorithms support additional
keyword arguments to this function; see the ”Algorithm-specific Notes for Encryption Algorithms” section
below for the details.

block size
An integer value; the size of the blocks encrypted by this module. Strings passed to the encrypt and decrypt
functions must be a multiple of this length. For stream ciphers, block size will be 1.
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key size
An integer value; the size of the keys required by this module. If key size is zero, then the algorithm accepts
arbitrary-length keys. You cannot pass a key of length 0 (that is, the null string ’’ as such a variable-length key.

All cipher objects have at least three attributes:

block size
An integer value equal to the size of the blocks encrypted by this object. Identical to the module variable of the
same name.

IV
Contains the initial value which will be used to start a cipher feedback mode. After encrypting or decrypting a
string, this value will reflect the modified feedback text; it will always be one block in length. It is read-only,
and cannot be assigned a new value.

key size
An integer value equal to the size of the keys used by this object. If key size is zero, then the algorithm
accepts arbitrary-length keys. For algorithms that support variable length keys, this will be 0. Identical to the
module variable of the same name.

All ciphering objects have the following methods:

decrypt(string)
Decrypts string, using the key-dependent data in the object, and with the appropriate feedback mode. The
string’s length must be an exact multiple of the algorithm’s block size. Returns a string containing the plaintext.

encrypt(string)
Encrypts a non-null string, using the key-dependent data in the object, and with the appropriate feedback mode.
The string’s length must be an exact multiple of the algorithm’s block size; for stream ciphers, the string can be
of any length. Returns a string containing the ciphertext.

3.1 Algorithm-specific Notes for Encryption Algorithms

RC5 has a bunch of parameters; see Ronald Rivest’s paper at http://theory.lcs.mit.edu/ rivest/rc5rev.ps for the imple-
mentation details. The keyword parameters are:

• version: The version of the RC5 algorithm to use; currently the only legal value is 0x10 for RC5 1.0.

• wordsize: The word size to use; 16 or 32 are the only legal values. (A larger word size is better, so usually
32 will be used. 16-bit RC5 is probably only of academic interest.)

• rounds: The number of rounds to apply, the larger the more secure: this can be any value from 0 to 255, so
you will have to choose a value balanced between speed and security.

3.2 Security Notes

Encryption algorithms can be broken in several ways. If you have some ciphertext and know (or can guess) the
corresponding plaintext, you can simply try every possible key in a known-plaintext attack. Or, it might be possible
to encrypt text of your choice using an unknown key; for example, you might mail someone a message intending it to
be encrypted and forwarded to someone else. This is a chosen-plaintext attack, which is particularly effective if it’s
possible to choose plaintexts that reveal something about the key when encrypted.

DES (5100 K/sec) has a 56-bit key; this is starting to become too small for safety. It has been estimated that it would
only cost $1,000,000 to build a custom DES-cracking machine that could find a key in 3 hours. A chosen-ciphertext
attack using the technique of linear cryptanalysis can break DES in pow(2, 43) steps. However, unless you’re
encrypting data that you want to be safe from major governments, DES will be fine. DES3 (1830 K/sec) uses three
DES encryptions for greater security and a 112-bit or 168-bit key, but is correspondingly slower.
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There are no publicly known attacks against IDEA (3050 K/sec), and it’s been around long enough to have been
examined. There are no known attacks against ARC2 (2160 K/sec), ARC4 (8830 K/sec), Blowfish (9250 K/sec),
CAST (2960 K/sec), or RC5 (2060 K/sec), but they’re all relatively new algorithms and there hasn’t been time for
much analysis to be performed; use them for serious applications only after careful research.

AES, the Advanced Encryption Standard, was chosen by the US National Institute of Standards and Technology from
among 6 competitors, and is probably your best choice. It runs at 7060 K/sec, so it’s among the faster algorithms
around.

3.3 Credits

The code for Blowfish was written by Bryan Olson, partially based on a previous implementation by Bruce Schneier,
who also invented the algorithm; the Blowfish algorithm has been placed in the public domain and can be used freely.
(See http://www.counterpane.com for more information about Blowfish.) The CAST implementation was written by
Wim Lewis. The DES implementation was written by Eric Young, and the IDEA implementation by Colin Plumb.
The RC5 implementation was written by A.M. Kuchling.

The Alleged RC4 code was posted to the sci.crypt newsgroup by an unknown party, and re-implemented by A.M.
Kuchling.

4 Crypto.Protocol: Various Protocols

4.1 Crypto.Protocol.AllOrNothing

This module implements all-or-nothing package transformations. An all-or-nothing package transformation is one
in which some text is transformed into message blocks, such that all blocks must be obtained before the reverse
transformation can be applied. Thus, if any blocks are corrupted or lost, the original message cannot be reproduced.

An all-or-nothing package transformation is not encryption, although a block cipher algorithm is used. The encryption
key is randomly generated and is extractable from the message blocks.

class AllOrNothing(ciphermodule, mode=None, IV=None)
Class implementing the All-or-Nothing package transform.

ciphermodule is a module implementing the cipher algorithm to use. Optional arguments mode and IV are
passed directly through to the ciphermodule.new() method; they are the feedback mode and initialization
vector to use. All three arguments must be the same for the object used to create the digest, and to undigest’ify
the message blocks.

The module passed as ciphermodule must provide the PEP 272 interface. An encryption key is randomly
generated automatically when needed.

The methods of the AllOrNothing class are:

digest(text)
Perform the All-or-Nothing package transform on the string text. Output is a list of message blocks describing
the transformed text, where each block is a string of bit length equal to the cipher module’s block size.

undigest(mblocks)
Perform the reverse package transformation on a list of message blocks. Note that the cipher module used
for both transformations must be the same. mblocks is a list of strings of bit length equal to ciphermodule’s
block size. The output is a string object.
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4.2 Crypto.Protocol.Chaffing

Winnowing and chaffing is a technique for enhancing privacy without requiring strong encryption. In short, the
technique takes a set of authenticated message blocks (the wheat) and adds a number of chaff blocks which have
randomly chosen data and MAC fields. This means that to an adversary, the chaff blocks look as valid as the wheat
blocks, and so the authentication would have to be performed on every block. By tailoring the number of chaff blocks
added to the message, the sender can make breaking the message computationally infeasible. There are many other
interesting properties of the winnow/chaff technique.

For example, say Alice is sending a message to Bob. She packetizes the message and performs an all-or-nothing
transformation on the packets. Then she authenticates each packet with a message authentication code (MAC). The
MAC is a hash of the data packet, and there is a secret key which she must share with Bob (key distribution is an
exercise left to the reader). She then adds a serial number to each packet, and sends the packets to Bob.

Bob receives the packets, and using the shared secret authentication key, authenticates the MACs for each packet.
Those packets that have bad MACs are simply discarded. The remainder are sorted by serial number, and passed
through the reverse all-or-nothing transform. The transform means that an eavesdropper (say Eve) must acquire all the
packets before any of the data can be read. If even one packet is missing, the data is useless.

There’s one twist: by adding chaff packets, Alice and Bob can make Eve’s job much harder, since Eve now has to
break the shared secret key, or try every combination of wheat and chaff packet to read any of the message. The cool
thing is that Bob doesn’t need to add any additional code; the chaff packets are already filtered out because their MACs
don’t match (in all likelihood – since the data and MACs for the chaff packets are randomly chosen it is possible, but
very unlikely that a chaff MAC will match the chaff data). And Alice need not even be the party adding the chaff!
She could be completely unaware that a third party, say Charles, is adding chaff packets to her messages as they are
transmitted.

class Chaff(factor=1.0, blocksper=1)
Class implementing the chaff adding algorithm. factor is the number of message blocks to add chaff to, ex-
pressed as a percentage between 0.0 and 1.0; the default value is 1.0. blocksper is the number of chaff blocks to
include for each block being chaffed, and defaults to 1. The default settings add one chaff block to every mes-
sage block. By changing the defaults, you can adjust how computationally difficult it could be for an adversary
to brute-force crack the message. The difficulty is expressed as:

pow(blocksper, int(factor * number-of-blocks))

For ease of implementation, when factor ¡ 1.0, only the first int(factor*number-of-blocks) message
blocks are chaffed.

Chaff instances have the following methods:

chaff(blocks)
Add chaff to message blocks. blocks is a list of 3-tuples of the form (serial-number, data, MAC).

Chaff is created by choosing a random number of the same byte-length as data, and another random number
of the same byte-length as MAC. The message block’s serial number is placed on the chaff block and all the
packet’s chaff blocks are randomly interspersed with the single wheat block. This method then returns a list
of 3-tuples of the same form. Chaffed blocks will contain multiple instances of 3-tuples with the same serial
number, but the only way to figure out which blocks are wheat and which are chaff is to perform the MAC hash
and compare values.

5 Crypto.PublicKey: Public-Key Algorithms

So far, the encryption algorithms described have all been private key ciphers. The same key is used for both encryption
and decryption so all correspondents must know it. This poses a problem: you may want encryption to communicate
sensitive data over an insecure channel, but how can you tell your correspondent what the key is? You can’t just e-mail
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it to her because the channel is insecure. One solution is to arrange the key via some other way: over the phone or by
meeting in person.

Another solution is to use public-key cryptography. In a public key system, there are two different keys: one for
encryption and one for decryption. The encryption key can be made public by listing it in a directory or mailing it to
your correspondent, while you keep the decryption key secret. Your correspondent then sends you data encrypted with
your public key, and you use the private key to decrypt it. While the two keys are related, it’s very difficult to derive
the private key given only the public key; however, deriving the private key is always possible given enough time and
computing power. This makes it very important to pick keys of the right size: large enough to be secure, but small
enough to be applied fairly quickly.

Many public-key algorithms can also be used to sign messages; simply run the message to be signed through a de-
cryption with your private key key. Anyone receiving the message can encrypt it with your publicly available key and
read the message. Some algorithms do only one thing, others can both encrypt and authenticate.

The currently available public-key algorithms are listed in the following table:

Algorithm Capabilities
RSA Encryption, authentication/signatures

ElGamal Encryption, authentication/signatures
DSA Authentication/signatures

qNEW Authentication/signatures

Many of these algorithms are patented. Before using any of them in a commercial product, consult a patent attorney;
you may have to arrange a license with the patent holder.

An example of using the RSA module to sign a message:

>>> from Crypto.Hash import MD5
>>> from Crypto.PublicKey import RSA
>>> RSAkey = RSA.generate(384, randfunc) # This will take a while...
>>> hash = MD5.new(plaintext).digest()
>>> signature = RSAkey.sign(hash, "")
>>> signature # Print what an RSA sig looks like--you don’t really care.
(’\021\317\313\336\264\315’ ...,)
>>> RSAkey.verify(hash, signature) # This sig will check out
1
>>> RSAkey.verify(hash[:-1], signature)# This sig will fail
0

Public-key modules make the following functions available:

construct(tuple)
Constructs a key object from a tuple of data. This is algorithm-specific; look at the source code for the details.
(To be documented later.)

generate(size, randfunc, progress func=None)
Generate a fresh public/private key pair. size is a algorithm-dependent size parameter, usually measured in bits;
the larger it is, the more difficult it will be to break the key. Safe key sizes vary from algorithm to algorithm;
you’ll have to research the question and decide on a suitable key size for your application. An N-bit keys can
encrypt messages up to N-1 bits long.

randfunc is a random number generation function; it should accept a single integer N and return a string of
random data N bytes long. You should always use a cryptographically secure random number generator, such
as the one defined in the Crypto.Util.randpool module; don’t just use the current time and the random
module.

progress func is an optional function that will be called with a short string containing the key parameter cur-
rently being generated; it’s useful for interactive applications where a user is waiting for a key to be generated.
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If you want to interface with some other program, you will have to know the details of the algorithm being used; this
isn’t a big loss. If you don’t care about working with non-Python software, simply use the pickle module when you
need to write a key or a signature to a file. It’s portable across all the architectures that Python supports, and it’s simple
to use.

Public-key objects always support the following methods. Some of them may raise exceptions if their functionality is
not supported by the algorithm.

can blind()
Returns true if the algorithm is capable of blinding data; returns false otherwise.

can encrypt()
Returns true if the algorithm is capable of encrypting and decrypting data; returns false otherwise. To test if a
given key object can encrypt data, use key.can encrypt() and key.has private().

can sign()
Returns true if the algorithm is capable of signing data; returns false otherwise. To test if a given key object can
sign data, use key.can sign() and key.has private().

decrypt(tuple)
Decrypts tuple with the private key, returning another string. This requires the private key to be present, and will
raise an exception if it isn’t present. It will also raise an exception if string is too long.

encrypt(string, K)
Encrypts string with the private key, returning a tuple of strings; the length of the tuple varies from algorithm
to algorithm. K should be a string of random data that is as long as possible. Encryption does not require the
private key to be present inside the key object. It will raise an exception if string is too long. For ElGamal
objects, the value of K expressed as a big-endian integer must be relatively prime to self.p-1; an exception
is raised if it is not.

has private()
Returns true if the key object contains the private key data, which will allow decrypting data and generating
signatures. Otherwise this returns false.

publickey()
Returns a new public key object that doesn’t contain the private key data.

sign(string, K)
Sign string, returning a signature, which is just a tuple; in theory the signature may be made up of any Python
objects at all; in practice they’ll be either strings or numbers. K should be a string of random data that is as
long as possible. Different algorithms will return tuples of different sizes. sign() raises an exception if string
is too long. For ElGamal objects, the value of K expressed as a big-endian integer must be relatively prime to
self.p-1; an exception is raised if it is not.

size()
Returns the maximum size of a string that can be encrypted or signed, measured in bits. String data is treated in
big-endian format; the most significant byte comes first. (This seems to be a de facto standard for cryptograph-
ical software.) If the size is not a multiple of 8, then some of the high order bits of the first byte must be zero.
Usually it’s simplest to just divide the size by 8 and round down.

verify(string, signature)
Returns true if the signature is valid, and false otherwise. string is not processed in any way; verify does not
run a hash function over the data, but you can easily do that yourself.

5.1 The ElGamal and DSA algorithms

For RSA, the K parameters are unused; if you like, you can just pass empty strings. The ElGamal and DSA algorithms
require a real K value for technical reasons; see Schneier’s book for a detailed explanation of the respective algorithms.
This presents a possible hazard that can inadvertently reveal the private key. Without going into the mathematical
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details, the danger is as follows. K is never derived or needed by others; theoretically, it can be thrown away once
the encryption or signing operation is performed. However, revealing K for a given message would enable others to
derive the secret key data; worse, reusing the same value of K for two different messages would also enable someone
to derive the secret key data. An adversary could intercept and store every message, and then try deriving the secret
key from each pair of messages.

This places implementors on the horns of a dilemma. On the one hand, you want to store the K values to avoid reusing
one; on the other hand, storing them means they could fall into the hands of an adversary. One can randomly generate
K values of a suitable length such as 128 or 144 bits, and then trust that the random number generator probably won’t
produce a duplicate anytime soon. This is an implementation decision that depends on the desired level of security
and the expected usage lifetime of a private key. I can’t choose and enforce one policy for this, so I’ve added the
K parameter to the encrypt and sign methods. You must choose K by generating a string of random data; for
ElGamal, when interpreted as a big-endian number (with the most significant byte being the first byte of the string),
K must be relatively prime to self.p-1; any size will do, but brute force searches would probably start with small
primes, so it’s probably good to choose fairly large numbers. It might be simplest to generate a prime number of a
suitable length using the Crypto.Util.number module.

5.2 Security Notes for Public-key Algorithms

Any of these algorithms can be trivially broken; for example, RSA can be broken by factoring the modulus n into its
two prime factors. This is easily done by the following code:

for i in range(2, n):
if (n%i)==0:

print i, ’is a factor’
break

However, n is usually a few hundred bits long, so this simple program wouldn’t find a solution before the universe
comes to an end. Smarter algorithms can factor numbers more quickly, but it’s still possible to choose keys so large
that they can’t be broken in a reasonable amount of time. For ElGamal and DSA, discrete logarithms are used instead
of factoring, but the principle is the same.

Safe key sizes depend on the current state of number theory and computer technology. At the moment, one can
roughly define three levels of security: low-security commercial, high-security commercial, and military-grade. For
RSA, these three levels correspond roughly to 768, 1024, and 2048-bit keys.

6 Crypto.Util: Odds and Ends

This chapter contains all the modules that don’t fit into any of the other chapters.

6.1 Crypto.Util.number

This module contains various number-theoretic functions.

GCD(x,y)
Return the greatest common divisor of x and y.

getPrime(N, randfunc)
Return an N-bit random prime number, using random data obtained from the function randfunc. randfunc
must take a single integer argument, and return a string of random data of the corresponding length; the
get bytes() method of a RandomPool object will serve the purpose nicely, as will the read() method
of an opened file such as ‘/dev/random’.
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getRandomNumber(N, randfunc)
Return an N-bit random number, using random data obtained from the function randfunc. As usual, randfunc
must take a single integer argument and return a string of random data of the corresponding length.

inverse(u, v)
Return the inverse of u modulo v.

isPrime(N)
Returns true if the number N is prime, as determined by a Rabin-Miller test.

6.2 Crypto.Util.randpool

For cryptographic purposes, ordinary random number generators are frequently insufficient, because if some of their
output is known, it is frequently possible to derive the generator’s future (or past) output. Given the generator’s state at
some point in time, someone could try to derive any keys generated using it. The solution is to use strong encryption
or hashing algorithms to generate successive data; this makes breaking the generator as difficult as breaking the
algorithms used.

Understanding the concept of entropy is important for using the random number generator properly. In the sense we’ll
be using it, entropy measures the amount of randomness; the usual unit is in bits. So, a single random bit has an
entropy of 1 bit; a random byte has an entropy of 8 bits. Now consider a one-byte field in a database containing a
person’s sex, represented as a single character ‘M’ or ‘F’. What’s the entropy of this field? Since there are only two
possible values, it’s not 8 bits, but one; if you were trying to guess the value, you wouldn’t have to bother trying ‘Q’ or
‘@’.

Now imagine running that single byte field through a hash function that produces 128 bits of output. Is the entropy
of the resulting hash value 128 bits? No, it’s still just 1 bit. The entropy is a measure of how many possible states of
the data exist. For English text, the entropy of a five-character string is not 40 bits; it’s somewhat less, because not all
combinations would be seen. ‘Guido’ is a possible string, as is ‘In th’; ‘zJwvb’ is not.

The relevance to random number generation? We want enough bits of entropy to avoid making an attack on our
generator possible. An example: One computer system had a mechanism which generated nonsense passwords for its
users. This is a good idea, since it would prevent people from choosing their own name or some other easily guessed
string. Unfortunately, the random number generator used only had 65536 states, which meant only 65536 different
passwords would ever be generated, and it was easy to compute all the possible passwords and try them. The entropy
of the random passwords was far too low. By the same token, if you generate an RSA key with only 32 bits of entropy
available, there are only about 4.2 billion keys you could have generated, and an adversary could compute them all to
find your private key. See RFC 1750, ”Randomness Recommendations for Security”, for an interesting discussion of
the issues related to random number generation.

The randpool module implements a strong random number generator in the RandomPool class. The internal state
consists of a string of random data, which is returned as callers request it. The class keeps track of the number of bits
of entropy left, and provides a function to add new random data; this data can be obtained in various ways, such as by
using the variance in a user’s keystroke timings.

class RandomPool([numbytes, cipher, hash] )
An object of the RandomPool class can be created without parameters if desired. numbytes sets the number
of bytes of random data in the pool, and defaults to 160 (1280 bits). hash can be a string containing the module
name of the hash function to use in stirring the random data, or a module object supporting the hashing interface.
The default action is to use SHA.

The cipher argument is vestigial; it was removed from version 1.1 so RandomPool would work even in the
limited exportable subset of the code. I recommend passing hash using a keyword argument so that someday I
can safely delete the cipher argument

RandomPool objects define the following variables and methods:

add event(time[, string])
Adds an event to the random pool. time should be set to the current system time, measured at the highest
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resolution available. string can be a string of data that will be XORed into the pool, and can be used to increase
the entropy of the pool. For example, if you’re encrypting a document, you might use the hash value of the
document; an adversary presumably won’t have the plaintext of the document, and thus won’t be able to use this
information to break the generator.

The return value is the value of self.entropy after the data has been added. The function works in the following
manner: the time between successive calls to the add event() method is determined, and the entropy of the data
is guessed; the larger the time between calls, the better. The system time is then read and added to the pool, along
with the string parameter, if present. The hope is that the low-order bits of the time are effectively random. In an
application, it is recommended that add event() be called as frequently as possible, with whatever random data
can be found.

bits
A constant integer value containing the number of bits of data in the pool, equal to the bytes attribute multiplied
by 8.

bytes
A constant integer value containing the number of bytes of data in the pool.

entropy
An integer value containing the number of bits of entropy currently in the pool. The value is incremented by the
add event() method, and decreased by the get bytes() method.

get bytes(num)
Returns a string containing num bytes of random data, and decrements the amount of entropy available. It is
not an error to reduce the entropy to zero, or to call this function when the entropy is zero. This simply means
that, in theory, enough random information has been extracted to derive the state of the generator. It is the
caller’s responsibility to monitor the amount of entropy remaining and decide whether it is sufficent for secure
operation.

stir()
Scrambles the random pool using the previously chosen encryption and hash function. An adversary may
attempt to learn or alter the state of the pool in order to affect its future output; this function destroys the existing
state of the pool in a non-reversible way. It is recommended that stir() be called before and after using the
RandomPool object. Even better, several calls to stir() can be interleaved with calls to add event().

The PersistentRandomPool class is a subclass of RandomPool that adds the capability to save and load the
pool from a disk file.

class PersistentRandomPool(filename, [numbytes, cipher, hash])
The path given in filename will be automatically opened, and an existing random pool read; if no such file exists,
the pool will be initialized as usual. If omitted, the filename defaults to the empty string, which will prevent it
from being saved to a file. These arguments are identical to those for the RandomPool constructor.

save()
Opens the file named by the filename attribute, and saves the random data into the file using the pickle
module.

The KeyboardRandomPool class is a subclass of PersistentRandomPool that provides a method to obtain
random data from the keyboard:

randomize()
(Unix systems only) Obtain random data from the keyboard. This works by prompting the user to hit keys at
random, and then using the keystroke timings (and also the actual keys pressed) to add entropy to the pool. This
works similarly to PGP’s random pool mechanism.
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6.3 Crypto.Util.RFC1751

The keys for private-key algorithms should be arbitrary binary data. Many systems err by asking the user to enter
a password, and then using the password as the key. This limits the space of possible keys, as each key byte is
constrained within the range of possible ASCII characters, 32-127, instead of the whole 0-255 range possible with
ASCII. Unfortunately, it’s difficult for humans to remember 16 or 32 hex digits.

One solution is to request a lengthy passphrase from the user, and then run it through a hash function such as SHA
or MD5. Another solution is discussed in RFC 1751, ”A Convention for Human-Readable 128-bit Keys”, by Daniel
L. McDonald. Binary keys are transformed into a list of short English words that should be easier to remember. For
example, the hex key EB33F77EE73D4053 is transformed to ”TIDE ITCH SLOW REIN RULE MOT”.

key to english(key)
Accepts a string of arbitrary data key, and returns a string containing uppercase English words separated by
spaces. key’s length must be a multiple of 8.

english to key(string)
Accepts string containing English words, and returns a string of binary data representing the key. Words must be
separated by whitespace, and can be any mixture of uppercase and lowercase characters. 6 words are required
for 8 bytes of key data, so the number of words in string must be a multiple of 6.

7 Extending the Toolkit

Preserving the a common interface for cryptographic routines is a good idea. This chapter explains how to write new
modules for the Toolkit.

The basic process is as follows:

1. Add a new ‘.c’ file containing an implementation of the new algorithm. This file must define 3 or 4 standard
functions, a few constants, and a C struct encapsulating the state variables required by the algorithm.

2. Add the new algorithm to ‘setup.py’.

3. Send a copy of the code to me, if you like; code for new algorithms will be gratefully accepted.

7.1 Adding Hash Algorithms

The required constant definitions are as follows:

#define MODULE_NAME MD2 /* Name of algorithm */
#define DIGEST_SIZE 16 /* Size of resulting digest in bytes */

The C structure must be named hash state:

typedef struct {
... whatever state variables you need ...

} hash_state;

There are four functions that need to be written: to initialize the algorithm’s state, to hash a string into the algorithm’s
state, to get a digest from the current state, and to copy a state.

• void hash init(hash state *self);

• void hash update(hash state *self, unsigned char *buffer, int length);
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• PyObject *hash digest(hash state *self);

• void hash copy(hash state *source, hash state *dest);

Put #include "hash template.c" at the end of the file to include the actual implementation of the module.

7.2 Adding Block Encryption Algorithms

The required constant definitions are as follows:

#define MODULE_NAME AES /* Name of algorithm */
#define BLOCK_SIZE 16 /* Size of encryption block */
#define KEY_SIZE 0 /* Size of key in bytes (0 if not fixed size) */

The C structure must be named block state:

typedef struct {
... whatever state variables you need ...

} block_state;

There are three functions that need to be written: to initialize the algorithm’s state, and to encrypt and decrypt a single
block.

• void block init(block state *self, unsigned char *key, int keylen);

• void block encrypt(block state *self, unsigned char *in, unsigned char

*out);

• void block decrypt(block state *self, unsigned char *in, unsigned char

*out);

Put #include "block template.c" at the end of the file to include the actual implementation of the module.

7.3 Adding Stream Encryption Algorithms

The required constant definitions are as follows:

#define MODULE_NAME ARC4 /* Name of algorithm */
#define BLOCK_SIZE 1 /* Will always be 1 for a stream cipher */
#define KEY_SIZE 0 /* Size of key in bytes (0 if not fixed size) */

The C structure must be named stream state:

typedef struct {
... whatever state variables you need ...

} stream_state;

There are three functions that need to be written: to initialize the algorithm’s state, and to encrypt and decrypt a single
block.

• void stream init(stream state *self, unsigned char *key, int keylen);

• void stream encrypt(stream state *self, unsigned char *block, int length);
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• void stream decrypt(stream state *self, unsigned char *block, int length);

Put #include "stream template.c" at the end of the file to include the actual implementation of the module.
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